nilpotent variety - significado y definición. Qué es nilpotent variety
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es nilpotent variety - definición

ENDOMORPHISM WHOSE SUFFICIENTLY LARGE POWER IS ZERO
Nilpotent transformation; Nilpotent linear transformation; Nilpotent endomorphism; Nilpotent matrices

Nilpotent         
ELEMENT IN A RING WHOSE SUFFICIENTLY LARGE POWER IS ZERO
Nilpotency; Quadratically nilpotent; Nilpotent element; Nilpotence; Nilsquare
In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that xn = 0.
nilpotent         
ELEMENT IN A RING WHOSE SUFFICIENTLY LARGE POWER IS ZERO
Nilpotency; Quadratically nilpotent; Nilpotent element; Nilpotence; Nilsquare
[n?l'p??t(?)nt]
¦ adjective Mathematics becoming zero when raised to some positive integral power.
Origin
C19: from nil + L. potens, potent- 'power'.
Variety (radio)         
RADIO FORMAT; SCOPE OF GENRES OF VOCAL OR DANCE MUSIC DEDICATED TO ENTERTAINMENT
Variety (radio format); Variety (US Radio); Variety (US radio); Variety (format); Variety format; Variety radio
Variety is a radio format that plays music across numerous genres. Freeform variety is associated with a wide range of programming including talk, sports, and music from a wide spectrum.

Wikipedia

Nilpotent matrix

In linear algebra, a nilpotent matrix is a square matrix N such that

N k = 0 {\displaystyle N^{k}=0\,}

for some positive integer k {\displaystyle k} . The smallest such k {\displaystyle k} is called the index of N {\displaystyle N} , sometimes the degree of N {\displaystyle N} .

More generally, a nilpotent transformation is a linear transformation L {\displaystyle L} of a vector space such that L k = 0 {\displaystyle L^{k}=0} for some positive integer k {\displaystyle k} (and thus, L j = 0 {\displaystyle L^{j}=0} for all j k {\displaystyle j\geq k} ). Both of these concepts are special cases of a more general concept of nilpotence that applies to elements of rings.